C.U.SHAH UNIVERSITY Summer Examination-2018

Subject Name : Metric Space

Subject Code : 4SC05MSC1		Branch: B.Sc. (Mathema	Branch: B.Sc. (Mathematics)		
Semester : 5	Date : 27/03/2018	Time : 10:30 To 01:30	Marks:70		
Instructions:					
(1) Use of Pa	rogrammable calculator & any	other electronic instrument is p	prohibited.		
(2) Instruction	ons written on main answer bo	book are strictly to be obeyed.			

- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1		Attempt the following questions:	(14)
	a)	Define: Discrete metric space.	(01)
	b)	What is IntA? where $A=(-1,2]$.	(01)
	c)	True/false: Every open interval in real line R is open set.	(01)
	d)	What is derived set?	(01)
	e)	Define: Open set.	(01)
	f)	What is closer of Closed set?	(01)
	g)	True/false :Every closed sphere is an closed set	(01)
	h)	What is open sphere in \mathbb{R}^2 .	(01)
	i)	Define : Equivalent metrics.	(01)
	j)	What is union of any set with it's derived set.	(01)
	k)	Find \overline{A} if A=[0,1) \cap Q	(01)
	l)	Define : Closed set .	(01)
	m)	True/false: Closer of any set is always closed.	(01)
	n)	If A is any closed set in R then what will be extA?	(01)
Attempt	any f	Cour questions from Q-2 to Q-8	
Q-2		Attempt all questions	(14)
	(a)	What is metric space? The function d defined by	(07)
		$d(x,y) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ for all $x, y \in R^2$, Where $x = (x_1, y_1)$ and $y = (x_2, y_2)$. Show that (R^2, d) is metric space	
	(b)	$y = (x_2, y_2)$ blow that (x, y) is near space. Show that $C[a, b]$ with metric $d(f, g) = \sup [f(y) = g(y)]$ for all y in [a, b]	(07)
	(0)	Show that $C[a,b]$ with metric $u(i,g)$ -supproved $(a) = g(a)[$ for all a in $[a,b]$	(07)
0-3		Attempt all questions	(14)
	(a)	What is closed set?	(07)
		Which of the following sets are closed sets.	~ /
		$(i) (-2,2) \cap Q \text{ on } R,$	
		$(ii) \{ (x, y) / x = y \} \text{ on } \mathbb{R}^2,$	
		$(iii) \{ (x, y) / x^2 + y^2 \ge \sqrt{2} \}$ on R^2 .	

(b) Let the set l_{∞} of all bounded sequences $\{x_n\}$ of real number with the function d defined by $d(\{x_n\}, \{y_n\}) = \sup\{|x_n - y_n|, n \in N\}$, show that (l_{∞}, d) is metric space. (07)

Q-4	(a)	Attempt all questions If d_1 and d_2 are two metric space on X, then show that $(X, md_1 + n d_2)$ is	(14) (07)
	(b)	where in , if $e N$ but (X, a_1) is not a metric space. Which of the following sets are open sets? Explain with figure. (i) $\mathbb{R} \sim [-2,1]$ on R , (ii) $\{(x, y) / x = y\}$ on \mathbb{R}^2 . (iii) $\mathbb{R}^2 \sim \{(x, y) / x - y = 1\}$ on \mathbb{R}^2 . (iv) $\{(x, y) / x + y > 1\}$ on \mathbb{R}^2 .	(07)
Q-5	(a)	Attempt all questions What is accumulation point of the set ? find A' for the following sets (1) (R, d_u), A=[0,1]U{2,3,4} (2) (R, d_u), A=(0,1] (3) (R, d_u), A= $\{1, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots, \}$.	(14) (07)
	(b)	Let <i>X</i> , <i>d</i> be a metric space and $Y \subseteq X$, then prove that a subset to be open in (Y, dY) if and only if there exists a set <i>G</i> open in (X, d) such that $A = G \cap Y$.	(07)
0-6		Attempt all questions	(14)
Q-0	(a)	Let A be a subset of a metric space X. Prove that A is closed if and only if it	(07)
	(u)	contains ∂A .	(0)
	(b)	contains ∂A . What is exterior point of subset A ? Explaine intA ,extA , bdA for the following. (1) $X=R^2$, A= open annulus having centre at origin and radii are 2 and 5 (2) $X=R^3$, A= Closed sphere centre at pole with radius 2.	(07)
0-7	(b)	 contains ∂A. What is exterior point of subset A ? Explaine intA ,extA , bdA for the following. (1) X=R² , A= open annulus having centre at origin and radii are 2 and 5 (2) X=R³ , A= Closed sphere centre at pole with radius 2. Attempt all questions	(07) (07)
Q-7	(a) (b) (a)	 contains ∂A. What is exterior point of subset A ? Explaine intA ,extA , bdA for the following. (1) X=R² , A= open annulus having centre at origin and radii are 2 and 5 (2) X=R³ , A= Closed sphere centre at pole with radius 2. Attempt all questions State and prove Heine-borel theorem	(07) (07) (14) (07)
Q-7	(a) (b) (a) (b)	 contains ∂A. What is exterior point of subset A ? Explaine intA ,extA , bdA for the following. (1) X=R² , A= open annulus having centre at origin and radii are 2 and 5 (2) X=R³ , A= Closed sphere centre at pole with radius 2. Attempt all questions State and prove Heine-borel theorem What is continuous function in metric space ? Show that the function 6(D, d) = x (D, d) f(x) = x in exercise with radius definition	(07) (07) (14) (07) (04)
Q-7	(a) (b) (a) (b) (c)	contains ∂A . What is exterior point of subset A ? Explaine intA ,extA , bdA for the following. (1) $X=R^2$, A= open annulus having centre at origin and radii are 2 and 5 (2) $X=R^3$, A= Closed sphere centre at pole with radius 2. Attempt all questions State and prove Heine-borel theorem What is continuous function in metric space ? Show that the function f:(R,d_1) \rightarrow (R, d_2); f(x) = x is continuous ; Where $d_1 = d_2 =$ usual metric . Show that image of Cauchy sequence under continuous function need not be Cauchy.	(07) (07) (14) (07) (04) (03)
Q-7 Q-8	(a) (b) (a) (b) (c)	contains ∂A . What is exterior point of subset A ? Explaine intA ,extA , bdA for the following. (1) $X=R^2$, A= open annulus having centre at origin and radii are 2 and 5 (2) $X=R^3$, A= Closed sphere centre at pole with radius 2. Attempt all questions State and prove Heine-borel theorem What is continuous function in metric space ? Show that the function f:(R,d_1) \rightarrow (R, d_2); f(x) = x is continuous ; Where $d_1 = d_2 =$ usual metric . Show that image of Cauchy sequence under continuous function need not be Cauchy. Attempt all questions	(07) (07) (14) (07) (04) (03) (14)
Q-7 Q-8	 (a) (b) (c) (a) 	contains ∂A . What is exterior point of subset A ? Explaine intA ,extA , bdA for the following. (1) $X=R^2$, A= open annulus having centre at origin and radii are 2 and 5 (2) $X=R^3$, A= Closed sphere centre at pole with radius 2. Attempt all questions State and prove Heine-borel theorem What is continuous function in metric space ? Show that the function f:(R,d_1) \rightarrow (R, d_2); f(x) = x is continuous ; Where $d_1 = d_2 =$ usual metric . Show that image of Cauchy sequence under continuous function need not be Cauchy. Attempt all questions The continuous image of a compact set is compact.	(07) (07) (14) (07) (04) (03) (14) (06)
Q-7 Q-8	 (a) (b) (c) (a) (b) 	contains ∂A . What is exterior point of subset A ? Explaine intA ,extA , bdA for the following. (1) $X=R^2$, A= open annulus having centre at origin and radii are 2 and 5 (2) $X=R^3$, A= Closed sphere centre at pole with radius 2. Attempt all questions State and prove Heine-borel theorem What is continuous function in metric space ? Show that the function f:(R,d_1) \rightarrow (R, d_2); f(x) = x is continuous ; Where $d_1 = d_2 =$ usual metric . Show that image of Cauchy sequence under continuous function need not be Cauchy. Attempt all questions The continuous image of a compact set is compact. Let (X, d), (Y, d') be metric spaces and f : X \rightarrow Y be a map. Then show that f is continuous if for every convergent sequence (x _n) in X $\lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n)$.	(07) (07) (14) (07) (04) (03) (14) (06) (06)

